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We present an elementary particle model that can be thought of as a unification 
of certain topological ideas abstracted from the string model and the standard 
Yang-Mills theory. The basic dynamical entity of the model is a spacelike 
3-surface X 3 in some metric space H and is interpreted as a particle. The 
dynamics of the model is based on two ideas. First the model is formally a 
Yang-Mills theory on the surface X 4 representing the "orbit(s)" of the particle(s) 
in H. Secondly the Yang-Mills structure on X 4 is constructed using only the 
natural geometric structures of the space H by a process which we call induction. 
It is found that some rather general requirements highly fix the choice of the 
space H. In fact the minimal model, for which the space H is the product of 
Minkowski space and the 2-sphere, is obtained by requiring that the symmetry 
group of the theory is the product of the Poincar6 group and the "color group" 
SO(3). The unique feature of the minimal model is that it affords a purely 
topological mechanism for quark confinement. 

INTRODUCTION 

It is generally believed that the concept of gauge invariance plays an 
essential role in any realistic attempt at particle description. One might, 
however, argue that something is still missing: the problem of quark 
confinement in hadron physics is not yet solved. On the other hand there 
exist certain phenomenological models [string and bag models: Nambu 
(1970), Johnson (1975)] in which topological concepts seem to have an 
important role. Again it is believed that the gauge theory approach can 
produce these models in certain approximation. 

In this work a different approach is adopted. We believe that the 
topological concepts have an independent, not only phenomenological, role 
in elementary-particle description and try to unify the gauge-theory ap- 
proach and the topological ideas abstracted from string and bag models. 
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To make our goal more concrete, observe that in the string model the 
orbit of the string can be thought as a 2-manifold in Minkowski space m 4. 
The basic feature of the model is the topological description of both the 
quark confinement (string is either closed or has two ends) and particle 
reactions (strings merge together and open strings can join along their 
boundaries). The basic idea is to generalize this approach. Instead of 
2-surfaces we study 4-surfaces in a metric space H = M  4 X S ,  where S is 
some compact metric space with spacelike metric. We interpret the 4-surfaces 
X 4 as "orbits" of 3-manifolds having particle interpretation. The immediate 
consequences of this basic hypothesis are the following. 

(i) The possibility of classifying the particles (in a sufficiently loose 
sense) by the topology of the representative 3-manifold. A rough classifica- 
tion is obtained by using only the topology of the boundary Xa: the number 
of boundary components and the topology of the individual boundary 
component serve as classification tools. The simplest working hypothesis is 
that different "generations" (Gaillard and Maiani, 1979) correspond to 
different boundary topologies and that leptons, mesons, baryons, etc. corre- 
spond to 3-manifolds with 1,2, 3, etc. boundary components. 

(ii) Also the topology of H can have an important role in the particle 
classification. Namely, for the choice H = M  4 XS 2, which turns out to be 
the minimal choice allowing Poincar6 invariance, the homology group 
/ /2(H) is nontrivial being isomorphic to the group of integers. The boundary 
components of the 3-manifold X 3 can be classified by their homology 
charges expressing their homology-equivalence classes in H2(H ). The total 
homology charge of X 3 is identically zero by the very definition of the 
homology concept. Thus the interpretation of quarks as boundary compo- 
nents carrying nonvanishing homology charges affords an attractive ex- 
planation for the nonobservability of free quarks. In fact it will turn out that 
the attribute "homological" can be replaced by "magnetic" in the dynamics 
to be constructed. 

(iii) The basic interaction vertices can be classified topologically. The 
basic vertices changing particle number (the so-called connected-sum and 
boundary-connected-sum vertices) are obtained by a direct generalization 
from the corresponding vertices in the string model. Also there are reactions 
changing the "internal state" of the particle: either the purely internal 
topology of the corresponding 3-manifold changes (with boundaries remain- 
ing unchanged) or the topologies of boundary components change (genera- 
tion mixing) or even their number changes. 

The dynamics of the model is constructed so that formally the standard 
Yang-Mills theory on the manifold X 4 C H results. The basic mathemati- 
cal tool used is the so-called induction procedure. When applied to the met- 
ric, spinor structure and vierbein connection of H it yields the required 
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Yang-Mills structure on the surface X 4 and the Yang-Mills action can be 
constructed. Now, however, the Yang-Mills field is not the primary dy- 
namical variable, being of completely geometrical origin and being expressi- 
ble using only the coordinate variables of the space H. Thus the ultimate 
dynamical objects are the 3-surface X 3 and spinors defined on it. The spinor 
structure differs from the conventional Dirac spinor structure: the spinors 
are those of H (e.g., handedness is defined in H) and the F matrices are now 
dynamical variables being essentially the projections of the F matrices of H 
to the surface X 4. 

A feature uniquely characterizing the Yang-Mills action and the 
decomposition H = M  4 X S is the rich vacuum structure of the resulting 
theory. It will be shown that any 4-surface having at most a one-dimensional 
projection to S is a vacuum solution to the equations of motion provided 
that the spinor field vanishes. The existence of the vacuum solutions leads to 
a somewhat speculative picture of the macroscopic space-time as a "por- 
ridge" of vacuum surfaces making the propagation of the long-range inter- 
actions possible (compare with the propagation of sound in matter). 

The paper is organized as follows: In Section 1 the basic ingredients of 
the model are introduced. In Section 2 the immediate consequences of the 
basic assumptions are studied at the topological level (topological classifica- 
tion of particles and basic interaction vertices). In Section 3 the dynamics of 
the model is constructed. Yang-Mills structure on the surface X 4 is con- 
structed using the geometric structures of the space H and equations of 
motion together with boundary conditions are derived. In Section 4 the 
symmetries and conservation laws of the model are studied. It is found that 
the isometries of H can be represented as spinor transformations provided 
that some rather restrictive conditions are satisfied by the metric structure 
of H. Also the discrete symmetries C, P, T are studied and it is found that C 
becomes a purely geometric transformation in the model. The model is 
found to be chirally invariant in a generalized sense (handedness defined in 
H) and a solution to the so-called chiral problem is suggested by the 
possibility of applying a handedness condition to the spinors. This condi- 
tion, however, breaks C, P, T and C P T !  In Section 5 the vacuum structure 
of the model is studied in a speculative spirit, and in Section 6 some 
solutions to the equations of motion are presented: solutions having photon, 
string (meson), and neutrino interpretations are obtained. 

NOTATION 

The basic ingredient of the model to be presented is the metric space H 
having the decomposition H = M  4 X S, where M 4 denotes Minkowski space 
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and S some compact metric space, usually the sphere S n. The coordinates of 
H, M 4, and S will be denoted by h k, m k and s k, respectively. For the 
components of the metric tensor analogous notations hkt, rnkt , and Skt will 
be used. 

For the F matrices the notation F k will be used. These can be expressed 
using flat-space F matrices with the help of the vierbein coefficients: 

Fk= yze~ (N1) 

The covariant constancy requirement for I" matrices determines the so-called 
vierbein connection apart from a gauge transformation in S O ( n )  for n- 
dimensional Riemannian space: 

A - D e ~ t-~e (N2a) k - -  k le~2"Y 

where D k means the usual covariant derivative and 

]~,7-- m-- i /2[Y~, "/,7] (N2b) 

An important special choice for H is H = M  4 X S  2. In this case the 
so-called standard coordinates and standard representation for I" matrices 
will be used. The spherical coordinates will be denoted by (O,~) .  The 
nonvanishing components of the metric are 

S00 ----- --R 2 

s~q, = -- R 2 sin 20  (N3) 

The standard representation for the F matrices is defined as 

F k = 3,k| 1, k = 1 . . . . .  4 (N4a) 

where the matrices 3'k denote the usual Dirac matrices in representation 

- /~174 y i = o i |  (N4b) 

(The matrices o k are the well-known Pauli spin matrices.) 

ro  =R~'s| 

F o =RsinOYs|  2 (n4c)  
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where the matrix Y5 is the product of Dirac ~/matrices 
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75  = 7 0 7 1 ) ' 2 7 3  (N4d) 

The vierbein connection has the following nonvanishing components when 
the usual Cartesian coordinates are used for M4: 

A o = - cos Oa 3 (N5a) 

The nonvanishing components of the curvature form of the vierbein connec- 
tion are 

Fo~ = sin O o 3 (N5b) 

It is easy to verify the covariant constancy of F and also the fact that it is 
proportional to the area form of S 2. Thus curvature form is invariant under 
the area-preserving transformations of S 2 (the group which is isomorphic to 
the canonical group of two-dimensional phase space). 

N-dimensional submanifolds of H will be denoted by the symbol Xn: 
usually n = 4  or 3. The following basic notations and definitions will be 
needed: 

Coordinates of X n : x " .  
Metric of X~: -- k t g,~a =h~th ,~h  ~,, where the notation h~ is used for the 

partial derivatives of the coordinate variables of H (as vectors of H they are 
tangent to the surface X "). 

F matrices of Xn: Fa =Fkh,r-- k 
Yang-Mills  connection of Xn: = k A,~--A~h~, ,  where A~ denotes the 

vierbein connection of H. 
The projection of the Riemannian connection of H to x n :  Aakl = 

k m (m t}ha defines the covariant derivative for the quantities which are tensors 
with respect to H. In particular the so-called second fundamental form is 
defined by the covariant derivatives of the tangent vectors h k 

k - -  k 
/ t :  B - + m J " , e ' B  (N6) 

The dual of the Yang-Mills  field Far is defined to be 

F2* B = ( -- detg )l/2eal3ysFY8 (NT) 
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1. BASIC ELEMENTS OF THE MODEL 

1.1. Some Features of the String Model 

The string model (Nambu, 1970; Jacob, 1974) describes a meson as a 
string moving in Minkowski space M4. The dynamics of the model is 
defined by an action which is the area of the "orbit" of the string measured 
in the metric induced from M 4 to the surface representing the orbit. The 
ends of the string are interpreted as quarks, and quark confinement is a 
purely topological phenomenon: a string either has two ends or is closed. 

Many-particle states can be represented as sets of strings or rather 
1-manifolds in some spacelike 3-surface of M 4 and the transitions between 
different physical states are mediated by 2-surfaces having the correspond- 
ing 1-manifolds as their spacelike boundaries. There are two basic vertices 
for the transitions illustrated in Figures la and lb. Strings either merge 
together or join along their boundary components (note that the 2-surface 
mediating the topology change is completely smooth). At the quantum level 
the state is specified by a state functional in the set of 1-surfaces (containing 
arbitrarily many components) in some spacelike 3-surface of M 4, and 
transition amplitudes are obtained by summing over all 2-surfaces having 
the prescribed spacelike boundaries and attaching to an individual surface 
the phase factor exp(iS), where S is the classical action (the area of the 
surface) for the surface in question. Note that we can interpret the 2-surfaces 
as a generalization of ordinary Feyn-mann diagrams: the lines of the 
ordinary diagram are thickened to 2-manifolds. 

The conclusion is that the nicest features of the string model are the 
description of quarks as the boundary components of a 1-manifold and 
the description of interactions being related to its topological structure. On 
the other hand, the basic difficulties of the model are met already at this 
level: baryons cannot be described in any natural way (strings cannot have 
three ends) and the internal structure of the quarks (flavors) is not explained 
by the model. This state of affairs suggests the generalization of the model 
at the topological level. 

b 

Fig. 1. The basic vertices of the string model. (a) "Trouser vertex." (b) Join along boundaries. 
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1.2. Generalization of the Topological Structure of the String Model 

The most obvious generalization of the string model is to increase the 
dimension of the basic dynamical entity, i.e., to make it an n-dimensional 
spacelike submanifold of some "hyperspace" H. Already for n = 2 we obtain 
2-manifolds with arbitrarily many boundary components which we might 
interpret as quarks. However, the problem of internal structure remains: 
boundary components have the topology of the 1-sphere S ~. The dimension 
n=3  seems much more interesting: the topology of a single boundary 
component can be that of a 2-sphere, torus, etc. This dimension also seems 
to be promising because for n = 4 the boundary components are 3-manifolds 
which are too numerous to allow any reasonable physical interpretation. So 
the basic dynamical entity of the model is taken to be a spacelike 3-manifold 
imbedded in some metric space H. 

The assumption about three-dimensionality of the basic dynamical 
objects obviously excludes Minkowski space as a candidate for the imbed- 
ding space H. Taking as input the requirement of Poincar6 invariance, the 
simplest choice for the imbedding space is H = M 4 X  S, where S is some 
compact space with spacelike metric. Taking the scale of S (e.g., the 
"radius" of S for S = S " )  to be of the order of a typical elementary-particle 
length we can hope that at the macroscopic limit the "transversal" dimen- 
sions of H can be neglected, i.e., S can be contracted to a point to a good 
approximation. The three-dimensionality of the observed world is pos- 
tulated to reflect simply the three-dimensionality of the observing objects 
themselves, not the dimension of the space H in which they "live." 

1.3. The Dynamics of the Model 

The dynamics of the model to be constructed is based on two ideas: 
First the model should be formally a standard Yang-Mills theory defined 
on the surface X 4 of H. Secondly the Yang-Mills structure of the model 
(gauge and spinor fields) should result completely from the geometry of the 
imbedding space H. The first requirement is inspired mainly by the well- 
known and successful transition from the Hamiltonian formulation of the 
classical mechanics to the quantum theory. The second assumption is 
motivated by the requirement of simplicity and will be realized using the 
procedure which we call induction: for example, the Yang-Mills connection 
in X 4 is obtained simply by projecting the vierbein connection of H to the 
surface. Of course the metric and Yang-Mills connection on the surface X 4 
are not the primary dynamical variables: the ultimate dynamical objects are 
the 3-surface X 3 and the spinor field defined on it. 
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1.4. The Relation of the Model to the Conventional Theories 

We have already spelled out the assumption necessary for any reason- 
able interpretation of the model: the three-dimensionality of the observed 
physical world simply reflects the three-dimensionality of the basic objects 
and thus that of the observer. 

From the rough sketch of the model it should be clear that it contains a 
kind of field-particle duality already at the classical level. At the "short- 
wavelength limit" corresponding to X 3 with, say, the scale of a typical 
elementary-particle length, the characterization of X 4 as an orbit of a 
particle ("Feynmann graph with lines thickened to 4-manifolds") should be 
appropriate. Approximation of the lines by one-dimensional manifolds 
should lead to ordinary point-particle dynamics in M 4 X S, and taking into 
account the transversal scale of S it should be a good approximation to 
shrink H to M 4. The field aspect should dominate when the scale of X 3 is 
large enough (for example, long-wavelength photons should satisfy this 
criterion). At this limit the theory should approach ordinary classical field 
theory in X 4. Note that when the surface X 4 can be represented as a graph 
of a map from M 4 D V 4 ~ S we can speak about a S-valued field in V 4. 

2. TOPOLOGICAL LEVEL 

2.1. Particle Classification Topologically 

(a) Classification Using the Boundary Topology of X 3. The identifica- 
tion of a spacelike 3-manifold of H as a particle leads to the possibility of 
classifying particles using the topological characteristics of the representa- 
tive 3-manifold. The roughest classification uses only the topology of the 
boundary 8X 3. The number of the boundary components and the topology 
of the individual boundary component serve as classification tools. 

The topology of an orientable 2-manifold (Wallace, 1968) is char- 
acterized by its genus g, i.e., the manifold can be thought of as a sphere with 
g handles or equivalently as a connected sum of g tori (the connected sum of 
two n-manifolds (Figure 2) is defined to be the manifold obtained by 
deleting n-balls from both and by joining the resulting boundaries S n- 1 by a 
tube Sn-~• The most general nonorientable closed 2-manifold is 
expressible as a connected sum of n projective spheres p2, where p2 is the 
manifold obtained by identifying the antipodal points of the sphere S 2. The 
2-manifold with several components cannot, however, be a boundary of a 
3-manifold unless the "total number" of projective spheres is even (Wallace, 
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Fig. 2. Connected sum operation for two-dimensional manifolds. 
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1968): 

~n~  =0mod2 (1) 

The simplest working hypothesis is that different boundary topologies 
correspond to different particle generations (Gaillard and Maiani, 1979): 
the multiplets (e, v e) and (u, d) have genus g = 0, (/~, p~) and" (c, s) have 
g=  1, etc. The physical interpretation of nonorientable boundary compo- 
nents is left open: it will, however, be seen that in the minimal model 
( S = S  2) only mesons (strings) made of "orientable" quarks are obtained as 
classical solutions to the equations of motion. If this working hypothesis is 
accepted then leptons, mesons, baryons, etc. should correspond to 3- 
manifolds with 1,2, 3, etc. boundary components. 

The interpretation of the boundary components as effective particles is 
also attractive because gauge charges can be defined for these particles as 
fluxes of the corresponding gauge field components through the boundary 
component in question by Gauss's theorem. 

(b) The Role of the Topology of H in Particle Classification. The 
topology of the space H affords an exciting possibility to explain the 
difference between quarks and leptons. It turns out that the minimal model 
with Poincar6 invariance corresponds to the choice H = M  4 •  2. Now, 
however, the second homology group H2(H ) (Hilton and Wylie, 1966) is 
nontrivial, being isomorphic to the group of integers: H2(H)=Z ( = Z  2 if 
nonorientable surfaces are allowed) and we can label each boundary compo- 
nent by an integer expressing the homology equivalence class of the 2-surface 
in question. However, by the very definition of the homology concept the 
total homology charge must vanish because the boundary components form 
together the boundary of a 3-manifold: 

~, Qff=O (=0mod 2 if nonorientable surfaces are allowed) (2) 
k 

Thus the physical states are homologically neutral and it is tempting to 
identify the homologically charged boundary components as quarks. The 
appearance of a free quark becomes a topological impossibility if this 
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identification is adopted. However, the decay of baryons to leptons might 
proceed via a kind of "homological depolarization process," as will be seen. 

Later it will be shown that the homology charge in fact equals magnetic 
charge in the dynamics to be constructed. Thus quarks might be called 
magnetically charged leptons and hadrons are described as magnetic multi- 
poles with quantized pole strengths. 

2.2 The Topological Description of Particle Reactions 

(a) The General Formulation of the Problem. We are interested in 
"basic vertices" for the particle reactions interpreted as topology changes of 
3-manifolds and the possible topological selection rules. The problem can be 
formulated as follows: 

Given two three-dimensional submanifolds X3i and X3/belonging to 
(n-1)-dimensional spacelike submanifolds H i and Hf of H (dimH=n),  
respectively, is it possible to find a causal (with locally Minkowskian 
induced metric) submanifold X4i/ having X3i and X3I as its spacelike 

_ 3 (i.e., the 4-manifold in question mediates boundaries: ~X4if A Hi( f )  -- X i ( f )  
transitions between initial and final states)? Can we decompose the general 
transition into more elementary ones, and what are the possible "basic 
vertices"? Are there any selection rules of topological origin? The problem is 
well known in topology and is known as the cobordism problem (Wallace, 
1968; Thorn, 1954; Milnor, 1965). 

It is useful to divide the possible particle reactions into the following 
basic types: (i) The changes of the purely internal topology of the 3-manifold: 
the number of components of X 3 and the boundary are unaffected. (ii) The 
reactions changing particle number defined as the number of components in 
X 3. (iii) The transitions changing the topology of the boundary 6X3: either 
the topology of an individual boundary component changes or even the 
number of boundary components changes (string becomes closed). 

(b) The Different Reaction Types with Suggested Interpretations. In 
the following some results for the different transition types will be presented 
together with physical interpretations suggested by the speculative particle 
classification adopted. 

(i) Changes in Purely Internal Topology. Because in these reactions the 
topology of the boundary is unchanged it is reasonable to restrict ourselves 
to the cobordism of the closed (boundaryless) 3-manifolds. One obtains a 
rough idea about what is involved by noting that the problem reduces to a 
homology problem (Hilton and Wylie, 1966) if one gives up the requirement 
that the surfaces are manifolds, which means that they can, for example, 
intersect themselves. The selection rules for the homology problem result 
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from the nontriviality of the third homology group H3(H ) (which is trivial, 
e.g., for H - - M 4 X S  n, n~3).  

Thus the possible selection rules result from the requirement that the 
4-surface mediating the transition is a causal submanifold of H: the purely 
internal topology of the 3-manifold and the finite dimension of H can lead 
to selection rules. It is, however, a well-known result (Thorn, 1954) that the 
so-called abstract cobordism (no imbedding assumed) is trivial for 3- 
manifolds. The conclusion is that the possible selection rules can result only 
from the finite dimension of H and from the requirement of causality. 

The problem of constructing basic vertices for changes in purely 
internal topology is solved (Wallace, 1968, Milnor, 1965). The physical 
interpretation of these reactions suggested by the rough particle classifica- 
tion adopted is that they correspond to changes in "fine structure" not yet 
observed. 

(ii) The Reactions Changing Particle Number. As an immediate gener- 
alization of the string-model results we distinguish two types for the 
reactions changing the component number of the 3-manifold. We call these 
vertices connected-sum ( # )  and boundary-connected-sum (#~)  vertices. 

The # vertex is a generalization of the "trouser vertex" of the string 
model and is illustrated in Figure 3 for 2-manifolds. The vertex represents 
transitions from the disjoint union of 3-manifolds to their connected sum: 
A U B--,A#B. There are no selection rules involved (in the string model the 
emission and absorption of a "pomeron" is described by this vertex). It can 
be shown (Wallace, 1968) that this vertex is essentially the only vertex 
changing the component number of the n manifold in the cobordism of 
closed n manifolds. The possible physical processes which one might associ- 
ate with this vertex are the emission and absorption processes of a pomeron 
or graviton. 

a 

h 

Fig. 3. Basic vertices for two-dimensional manifolds. (a) ~ vertex; (b) # a  vertex. 
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3 -2 ~1 1 

Fig. 4. Quark diagram. 

The #B vertex represents a transition where two 3-manifolds join along 
their boundary components. There are obvious selection rules associated 
with this reaction. The internal topologies of the boundary components 
must be the same and in case H = M 4 •  S 2 the homology charges must be 
opposite. If the boundary components carry gauge charges they must be 
opposite also. These reactions are thus described by "quark diagrams" with 
lines labeled by the values of the homology charge, generation index, and 
possible other charges. Note that the physical interpretation of the boundary 
components allows one to speak about flavor conservation in the context of 
these vertices. (Figure 4 represents an illustration of a quark diagram.) 

Note: If the orientability requirement of the surfaces is given up, the 
requirement that homology charges are opposite in a #B vertex is sub- 
stituted by the requirement that they have the same absolute values. 

(ii 0 The Reactions Changing the Topology of the Boundary. These reac- 
tions can be divided into two basic types: those changing the purely internal 
topology of the boundary component and those changing the number of 
boundary components. 

The reactions of the first type have an interpretation as flavor-changing 
reactions: they mix different generations (Cabibbo mixing and neutrino 
oscillations) provided the speculative particle classification is accepted. The 
problem of possible selection rules is probably that of two-dimensional 
cobordism, which has only one selection rule: the connected sum of an odd 
number of P2s cannot transform to a connected sum of an even number of 
p2s or to an orientable manifold (Wallace, 1968). 

The reactions changing component number can be divided into two 
classes: two boundary components either join together (special case of t h e  
#B vertex: boundary components belonging to the same 3-manifold join 
together) or they suffer a # transition ( #  vertex for boundaries). Figure 5a 
illustrates these vertices for two-dimensional manifolds. Note that the decay 
of a proton might happen through a sequence of the # transitions if the 
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a 
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b 

Fig. 5. Changes in the boundary topology. (a) Baryon decay via homological (magnetic) 
depolarization. (b) Quark annihilation inside hadron (two-dimensional visualization). 

boundary components have, for example, homology charges 3 , -  2 , -  1 (Fig- 
ure 5b). 

3. DYNAMICAL LEVEL 

3.1. The Induction Procedure 

Our aim is to construct a generalization of the string model which is 
formally the standard Yang-Mills theory on the surface X 4 CH. Now, 
however, the Yang-Mills field should be expressible using the coordinate 
variables of H, which as functions of coordinate variables of X 4 define the 
surface itself. Thus the ultimate dynamical object is the 4-surface itself. The 
basic mathematical device used is a process which we call induction. We will 
induce the metric, the spinor structure, and the Yang-Mills connection to 
the surface X 4 using corresponding structures of H. 

In the case of the metric the induction process simply means the 
restriction of the line element of H to the surface. Thus the induced metric 
has components 

g~B=hk,hk~h% (3) 

(where the quantities h~ denote partial derivatives of the coordinate vari- 
ables of H). 

In order to induce the spinor structure of H assume that H itself allows 
spinor structure, i.e., there are globally defined F matrices F k satisfying the 
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anticommutation relations (Shanahan, 1978; MTW 1973): 

(Fk, Ft} = 2 h k ,  (4) 

The F structure on the surface is defined simply by projecting the F 
matrices of H to the surface 

- -  k L-rkh.  (5) 

The obvious requirement 

(F~, F#} = 2g,~, o (6) 

is satisfied and thus the metric structure is obtained as a by-product of the 
induction procedure for F matrices. The induction of the spinors simply 
means restriction of the spinors of H to the surface. 

The different conjugation-operations, in particular the operation �9 ~ '~ 
are generalized in an obvious way. The handedness concept is generalized: 
the spinors are either left- or right-handed with respect to H instead of the 
4-surface itself. Note, however, that the handedness concept is defined only 
for even-dimensional spaces (Shanahan, 1978): only the even-dimensional 
spaces seem to be physically interesting candidates for the space H. An 
important feature of the induced spinor structure is that it is defined for all 
topologies of 4-surface unlike the ordinary spinor structure (Shanahan, 
1978). Spinors have 2 dish/2 components when H is even dimensional and 
2d~n/2-1 components when the handedness condition is applied. 

The Yang-Mills connection on X 4 results from the canonical vierbein 
connection of the space H, which in turn is determined modulo a position- 
dependent rotation in the tangent space from the requirement that F 
matrices are covariantly constant matrices in H (see the Appendix). Thus 
the vierbein connection A k is defined by the Riemannian structure of H and 
has the representation 

A k = A k m n ~ m n  (7a) 

A ~ m n =  l ( F m ,  D n F k }  (7b) 

where D n denotes the covariant derivative with respect to the usual metric 
connection and Era. denotes the spin matrix defined by the commutator of 
the F matrices. The curvature form of the vierbein connection can be 
expressed using the curvature tensor of H: 

Fk --  1 o  ~ m n  (8) 
l - -  2J 'k lmn ~ 
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The Yang-Mills connection is defined simply as the projection of the 
vierbein connection A k to the 4-surface 

- -  k A~ -Akh, ,  (9) 

The curvature form of this connection satisfies the necessary condition 

- -  k ! F,#~ - Fk,h,~h ~ (10) 

Also another connection will be needed. Namely, the so-called second 
fundamental form (Eisenhart, 1964) of the 4-surface is defined using the 
covariant derivatives of tangent vectors h~  (interpreted as vectors in H) 
with respect to the connection obtained by projecting the Riemannian 
connection of H to the surface: 

H~B :hk~r -- ( ffr )hk,I + (i ~m J" ~''~''~'m€ = D~h~ (11) 

In what follows D,~ will mean this kind of covariant derivative when applied 
to the tensors in H. 

3.2 Action Principle and Equations of Motion 

Using the induced metric, spinor, and Yang-Mills connection on the 
surface X 4 the model can be defined formally as a standard Yang-Mills 
theory on the surface X 4. Thus the action of the model is 

s : f x 4 d x 4 ( - d e t g ) l / 2  Tr(F~r + ~ ('I'F D2t , -  - ~  

(12) 

The antisymmetrization in the spinor part is necessary for the reality of the 
action. It will be seen that the model is chirally invariant (in a generalized 
sense) and thus it is possible to apply the handedness condition on spinors: 
this induces an obvious change to the action. The action contains two 
constants when H is of the form H =  M 4 X S n: these are the gauge-coupling 
constant and the '"radius" of S, which is expected to be some "hadronic" 
length. 

The equations of motion follow from the stationarity requirement of 
action. The boundary conditions follow from the corresponding requirement 
for the boundaries (note, however, that the addition of a total divergence to 
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the action changes boundary conditions). The simplest way to derive the 
equations of motion is perhaps to handle the metric and the connection as 
independent dynamical variables expressing the defining equations using 
Lagrange multipliers (the boundary conditions obtained by this procedure 
will be wrong). 

The equations of motion for the spinor field are 

F~g2I,=M,t, (13a) 

where the matrix M can be expressed using the second fundamental form: 

- -  1 a 1 p L / k  ,a,a/~ (13b) 

The square of this matrix is proportional to identity matrix and the 
eigenvalues of M are thus 

m+_ ---- •  1/2 (14a) 

where the vector B k is defined as 

B (lab) 

The matrix M vanishes when the surface is harmonic: B ~ =0  (this equation 
can be thought of as a generalization of the massless Klein-Gordon 
equation!) Thus the term "mass matrix" is justified. The boundary condi- 
tions are 

n ro ,=0 (15) 

and guarantee the conservation of the currents ( l•  When the 
handedness condition/In+ ?I" = --+'I t is applied, only one of these currents is 
nonvanishing. Observe that the vector n~ must be lightlike. 

The equations of motion for the coordinates h k of the 4-surface are 
obtained most easily using Lagrange multipliers, and they have the follow- 
ing form: 

D~{T~4~hk~+�88 (16a) 
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The quantities T ~ and j "  are defined as 

T aB = Tr(F~YFv ~ ) 

+ �88 ~ Tr ( FVaFva )+ �88 F'~D ~ + Eel) ' ' -  D~F ~ - D g I  "'~)qI 

(16b) 

j'~ = DB F'~ ---~ F'~Z kl'~ ~ kt (16c) 

The equations can be thought of as a generalization of equations 
defining the Lorentz force in electrodynamics. The boundary conditions are 
obtained from the requirement that the boundaries are stationary: 

(17) 

The boundary conditions are not, however, unique: they change when a 
total divergence is added to the action. It is remarkable that the conserva- 
tion of gauge charge can be guaranteed by adding a total divergence 
D~(~j~) to the action. Note that the gauge current is identically divergence- 
less, and in the quantization using the functional integral the addition of the 
total divergence (~ is of course interpreted as an auxiliary variable) guaran- 
tees that the gauge charge is conserved for all 4-surfaces contributing to the 
functional integral. 

4. SYMMETRIES AND CONSERVATION LAWS 

4.1. The Representation of the Isometries of H 

A quite natural expectation is that the isometries of H should be 
symmetries of the model. One problem to be solved is the action of the 
isometries on the spinors on H. Also one must show that the action defining 
the model is indeed invariant under these transformations. The first prob- 
lem is not trivial (Shanahan, 1978): although the isometrics might have an 
infinitesimal representation, they need not be representable globally. 

We shall approach the above-mentioned problems from the "infinitesi- 
mal" point of view. So let the vectorj k denote the infinitesimal generator of 
an isometry (h ~' .-+ h" +ej  k) satisfying thus the well-known Killing identities 
(MTW, 1973) 

D j, +D,j,, =0 (18) 
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A straightforward generalization from the case of Minkowski-space spinors 
would be the transformation formula 

6~ = ( ie/2)Dljk YYq p (19) 

This transformation formula cannot, however, be the correct one 
because the corresponding Noether current would not be a gauge-invariant 
quantity containing a term of the form ~F~Ak~I '. The simplest generaliza- 
tion leading to a gauge-invariant current is the transformation formula 

6q~=ie( D, jk(y.kt/2)+jkAk )~t'--iXq" (20) 

The correction term has a simple interpretation: the isometry is interpreted 
as a flow in H and the spinor field is translated along the flow lines using 
parallel translation defined by the vierbein connection A k. Thus the spinor 
field suffers a gauge transformation given by the so-called nonintegrable 
phase factor along the flow line (Wu and Yang, 1976). 

The problem is whether this ansatz really works, and we shall prove the 
following theorem: 

Theorem. Let the space H be a product of constant-curvature 
spaces and two-dimensional manifolds. Then the quantity ~I'~D,q ' 
is invariant under the isometries of H realized according to (20). 

Proof The metric of X 4 is invariant under the action of isometries of H 
and thus it is sufficient to consider the term L,~ ----~F~D~,I,. The change of 
this quantity can be written in the following form: 

8L.t ~ =~(  K,~D~ + LL~ )~II (21a) 

where the quantities K.  and L.  are defined as 

K. =~ro + e [ L ,  X] 

L~ =SAo +~[A. ,  x l  (21b) 

Obviously the requirements K,  = 0 and L,  = 0 guarantee the invariance of 
the action. The isometry would thus act like a gauge transformation. These 
conditions can be transformed in a simpler form by using the definitions of 
connection and F matrices 

FkrJ ~ + [Fk, X] +F~j 5 =0  (22a) 

AkrJ r +Arjrk + X k + [A~, X] =0 (22b) 
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(remember the short-hand notation for the partial derivatives). 
The first equation is identically true, as is seen by using the covariant 

constancy of the F matrices and Killing identities (MTW). 
The derivatives of the infinitesimal generator of symmetry can be 

eliminated using the identity defining the curvature tensor 

D m D . j k  - = R ' k , . . Z  (23) 

and Killing identities. Using the representation of Fkr in terms of the 
curvature tensor of H the second equation can be cast into the form 

�9 r I m n  J (Rrm . + = 0  (24) 

It is easy to show that this equation is satisfied when the curvature 
tensor of H has the form 

Rktm, = k( hkmhln -hknhlm) (25) 

or more generally H is a product of spaces with curvature tensors satisfying 
(25). It is a well-known result that this condition is identically satisfied for 
two-dimensional manifolds, and for higher dimensions the condition implies 
that the space is a constant-curvature space (Eisenhart, 1964). Thus the 
representability requirement of isometries seems to imply constraints on the 
choice of possible symmetry structures of H. 

The spaces allowing the representation of isometries by parallel transla- 
tion have also the property that the "instanton density" (Polyakov, 1975) 
Tr(F~r vanishes identically for them, as is seen by using the expression 
for the curvature tensor of H. In case S=S 2 this means that electric and 
magnetic fields are identically orthogonal and thus the microscopic gauge 
field is essentially nonlinear. 

4.2. Isometry Charges in the Minimal Model 

The minimal model affords a topological confinement mechanism and 
thus the symmetry structure of the model is especially interesting. The 
isometries of S =  S z form the group SO(3) and the problem is whether we 
can identify this group as the "weak group" SU(2)w or should we adopt the 
interpretation "color group" (Gell-Mann, 1979). 

In order to find the answer to this question we must study the 
transformation properties of the variables g~r F~,  and ,I, under the 
isometries. The components of the metric are certainly singlets under SO(3) 
and the same holds for the components of the gauge field because it is 
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proportional to the area form of S 2 induced to X 4 and is thus invariant 
under the SO(3) transformations [in fact the SO(3) transformations are 
represented as gauge transformations]. It is rather surprising that the spinor 
field also behaves like an SO(3) singlet; SO(3) transformations are repre- 
sented as U(1) gauge transformations, which do not mix the components, 
and in particular the rotations �9  ~ + e are represented trivially in the 
"standard gauge"! The fact that SO(3) transformations are represented as 
pure gauge transformations suggests that they should not change the physi- 
cal states in any observable way and so these should be SO(3) singlets. 
Therefore the interpretation of SO(3) as a "colour group" seems to be 
necessary. 

An important question is whether one can attach SO(3) charges to the 
quarks. By studying the expression for a SO(3) current 

ja = Ta#hk hgtj, + �88 _~aFk )~jk 

+ l ~ (  ( j k , y y  ' F~} ) ~  + F~#Fkls~jt (26) 

it is seen that it contains a part expressible as a divergence. This term gives 
to the charge a contribution expressible as a flux through the boundary 
component and it is natural to define the SO(3) charges of the quarks by 
this flux factor. For example, for the rotation �9 ~ �9 4- e this flux factor is 

Q3 i = f 3F*t~cosOdx~ Adx ~ (27) 

4.3. Chiral Symmetry 

Besides being invariant under the phase multiplication 

eiaxt t 

the action of the model is also invariant under the chiral transformation 

ei~rn + 1~ 

when H is even dimensional. This invariance is the generalization of the 
chiral invariance of the massless field theories. The possibility of choosing 
the handedness of the spinors suggests an attractive solution to the peculiar- 
ities of the conventional chiral symmetry [the approximate nature of the 
symmetry, the absence of the parity doubling, (Mahantappa and Randa, 



Geometroelectrodynamics 863 

1980)]. In particular the absence of the parity doubling might result simply 
from the handedness condition. Note that the minimal model with the 
handedness condition is formally almost equivalent to spinor elec- 
trodynamics and allows the possibifity of the homological quark confine- 
ment. 

4.4. Discrete Symmetries 

It is of substantial interest to find the generahzations of the discrete 
symmetries C, P, and T of the conventional field theory (Bjorken and Drell, 
1965). We shall restrict ourselves to the case S = S  2, constructing first the 
symmetries of the theory without the handedness condition and after that 
study the symmetry-breaking effects induced by the handedness require- 
ment. 

(a) Reflection P. A simple guess motivated by the transformation 
formula of the Dirac spinors is given by 

m k ~ p ( m  k) 

(28) 

where the matrix P has the form 

p = v d •  3 (29) 

in the standard representation of F matrices (see Notations). One can verify 
that the action is indeed invariant under the proposed transformation. 

(b) Charge Conjugation (7. The charge-conjugation operation changes 
the sign of the connection A. This can be achieved by performing a 
reflection in S 2 

O -----) qT - -  O 

(30) 

(standard coordinates used for S 2) besides the usual C operation for the 
spinor field, which in the standard gauge has the form 

't' ~ C'I" (31) 
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with C equal to 

C=i72 •  3 (32) 

It is a straightforward task to verify that the equations of motion are 
transformed to their complex conjugates in the transformation and thus C is 
a symmetry. A nice feature of the model is that the charge-conjugation 
operation has a purely geometric interpretation, being analogous to the 
time-reflection symmetry. 

(c) Time Reflection T. The generalization of the T symmetry is given 
by the transformation formula 

mk ~ T( m k) 

,It ~ T't' (33) 

where the matrix T has the form 

T=iy173|  I (34) 

in the standard representation. The action is transformed to its complex 
conjugate and is thus invariant (being real). 

The conclusion is that the model without the handedness condition 
allows the conventional discrete symmetries allowing a geometric operation 
for the C operation. When the handedness condition is applied, only those 
symmetries which do not change handedness rrmain unbroken. Equiva- 
lently, only those symmetries having a matrix representation which com- 
mutes with the matrix iF 7 remain unbroken. From the representation of 
these matrices it can be seen that P, C, and also T are broken. The breaking 
of T symmetry is quite an unexpected result and leads also to the breaking 
of CPT(!). On the other hand the symmetries CP, TP, and TC remain 
unbroken in the sense that they leave the action and handedness condition 
invariant. However, the boundary conditions for the spinor field 

noro ,=0 (35) 

are not invariant under CP and CT (although invariant under C, P, and T) 
and thus we can expect symmetry-breaking effects (probably small). Thus 
classically the symmetry P T  is the only exact symmetry. 
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4.5. Gauge Charge in the Minimal Model 

A crucial test for the model is whether it can explain the observed 
charge pattern of elementary particles. A basic feature seems to be the 
appearance of the fermions in doublets so that charges within the doublet 
differ by one unit. Usually the charges ( - 1 , 0 )  and ( 2 / 3 , - 1 / 3 )  are 
attached to the lepton and quark doublets, respectively. There are, however, 
other alternatives, and perhaps the simplest one is to assume only one basic 
doublet, say _L, carrying charges - 1 and 0, respectively, together with its 
antidoublet L. Mesons and baryons can be thought of formally as the 
composites LL  and LLL, respectively. It will be seen that this scheme seems 
to be the most natural one in the minimal model. 

In order to approach the charge problem note first that the observed 
doublet structure cannot be explained group theoretically in the minimal 
model because the interpretation of the group SO(3) as a color group seems 
necessary. Also note that the gauge charge can be expressed as the 
sum of the gauge fluxes through the boundary components using Gauss's 
theorem, and it is indeed possible to talk about the charge of the quark. 
Because the gauge field is nonlinear (having vanishing "'instanton density") 
and because it has to satisfy boundary conditions, it is quite reasonable to 
expect the quantization of the gauge flux already at the classical level. 

The simplest scheme is obtained by making the following assumptions. 
First assume that the gauge flux through a single boundary component 
obtains the "universal" values 0 or -+ 1 (in suitable units). When the 
homology charge of the boundary component is nonvanishing (the homol- 
ogy charge is in fact the same as magnetic charge), assume that the sign of 
the gauge charge is determined by the sign of the homology charge, i.e., 
Qc =kQH/IQH[, where k is some universal constant. Taking into account 
the fact that the boundary components of mesons carry opposite homology 
charges and that baryons (antibaryons) have always 2(1) negatively and 1(2) 
positively charged boundary components, one finds that the simplest scheme 
for the charge assignments results: mesons and baryons have effectively LL 
and LLL structures, respectively. 

A rather satisfactory feature of this scheme is that it explains why the 
charged leptons appear to have two times more components than the 
neutral ones. This follows simply from the fact that the leptons L + and L -  
should be counted as different particles because there is no (discrete) 
symmetry relating them (CP and CT are broken by the boundary conditions 
and C is broken by the handedness condition). For quarks the situation is 
different: there are equally many charged as uncharged quark states because 
the homology charge can have two values for neutral quarks and because 
the signs of the gauge charge and magnetic charge are correlated for charged 
quarks. 
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Is it really possible to find an ansatz for the boundary behavior of the 
gauge field consistent with this charge-quantization scheme? The simplest 
ansatz leading to a trivial gauge charge is the assumption that the normal 
component of the gauge field vanishes. In fact a family of solutions having 
interpretation as neutral mesons and satisfying this condition will be 
obtained. An ansatz leading to a nontrivial gauge charge when the spinor 
field vanishes is based on the "duality condition" 

, 1/2 y8 F~ =aF~ =a(-det  g ) e,~vsF (36) 

satisfied on the boundary component. Because the "star operation" gives 
identity when performed twice the coefficient of proportionality can have 
only the values f~ = -  1. As a result the gauge charge is indeed quantized 
and equal to the magnetic charge of the boundary component. Assuming 
that the known mesons are composed of quarks with magnetic charge • 1 
their charges could be explained with this ansatz. However, for mesons 
carrying higher homological charges on their boundaries the unit of charge 
would be apparently a multiple of the elementary charge. 

5. VACUUM STRUCTURE OF THE MODEL 

5.1. Vacuum Degeneracy, when H : M  4 X S 

The Lagrangian of the model is quadratic both with respect to spinor 
and gauge fields. This implies that all configurations with vanishing gauge 
and spinor fields satisfy the classical equations of motion. When H has the 
decomposition H=M4X S the gauge group SO(n § 3, 1) reduces to SO(n) 
(a highly desirable feature of this choice, because a noncompact gauge 
group leads, for example, to an energy density which is not positive 
definite). As a consequence, any surface having at most one-dimensional 
projection into S is a vacuum solution. To see this choose the coordinates of 
S so that the solution can be written in the form 

m 

s ~ =const, k = 1,..., n -  1 (37) 

S n = s n ( x )  

The gauge field F,t ~ clearly vanishes because it is the projection of Fkl, which 
is an antisymmetric tensor. For example, surfaces of the form X 3 •  
M 4 M S represent vacua. 
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The result implies that the model has extremely rich vacuum structure. 
Any surface X 3 with at most one-dimensional projection to S represents a 
"vacuum particle" having almost "free will": the only dynamical constraint 
to its behavior is the requirement that it keeps the projection to S at most 
one dimensional. Because these solutions have vanishing classical energy- 
momentum tensor and because only the metric degree of freedom is excited 
for these solutions, the interpretation of the "vacuum particles" as gravitons 
is not ruled out. 

There are many questions related to the interpretation of these solu- 
tions: Is the vacuum of the model a kind of "graviton porridge" making the 
propagation of the macroscopic long-range interactions possible in a way 
analogous to the propagation of sound in matter? Can we think of the 
ordinary space-time as an approximation of this porridge? Could we think 
the cosmic background as an indication about this vacuum structure? How 
is the gravitational attraction generated (G=R2e- 1/~)? 

It deserves to be noted that in the minimal model there might also be 
vacuum solutions with nonvanishing gauge fields, because for the self-dual 

z - + -  f i e l d s  satisfying F, ,  -F~ ,  the tensors T aB and j  ~ vanish identically. 
Note: It is also possible to construct systems with a finite number of 

degrees of freedom having "free will" in some part of configuration space. 
Probably the simplest one is the two-dimensional system characterized by 
the Lagrangian 

L:a(x-y)2(  2 +y2)+b(x-y) 

Solutions with x =y  have zero energy and momentum and have "free will," 
i.e., x is an arbitrary function of time. The quantization of the system leads 
to a system resembling a double potential well, i.e., the ground-state wave 
function is concentrated around lines situated symmetrically about the line 
x=y. 

6. SOLUTIONS TO THE EQUATIONS OF MOTION 

In this section some solutions to the equations of motion will be 
obtained. The solutions have interpretation as photon, neutral meson, and 
neutrino (electronic and myonic). 

6.1. Photon Solution 

The photon is conventionally characterized by its polarization and 
wave vectors satisfying the well-known orthogonality relations. We will 
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Fig. 6. Illustration of "photon geometry" (a) and (b) possible projections of X 4 to M12 plane. 
(c) possible projection of X 4 to M22 plane. 

represent a solution based on an intuitive picture of the photon as a small 
cylinder moving with the velocity of light along the direction of its axis and 
carrying electric and magnetic fields orthogonal to its direction of propaga- 
tion. The 4-surface in M 4 X S 2 corresponding to this intuitive picture can be 
represented as a graph of an S2-valued field defined in a region 

X 2 X y 2  CM21 XM22 ~ M  4 

where M 2 and M2 2 are orthogonal linear subspaces of M 4 [for example the 
(m 1, m 2) and (m ~ m 1) planes of M4]. X 2 is a disk in M~ with an arbitrary 
number of holes (Figure 6a) and y2 can be thought as a piece of the m I axis 
moving with the velocity of light along this axis (Figure 6b). 

The analytic form of the solution using Minkowski coordinates for the 
surface X 4 is 

m k ~--~kaxa 

O=f(k.x) 

O=g(k-x,x ) (38) 

where k is a lightlike vector in the 3/2 2 plane and x r denotes the coordinates 
of M~. The functions are arbitrary. The dependence on arguments is chosen 
so that the resulting electric and magnetic fields are orthogonal to the 
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direction of motion (note that we can interpret different tensors in X 4 also 
as tensors in M 4). 

The equations of motion (16) are satisfied because the energy- 
momentum tensor T ~r and current vector j "  interpreted as  M 4 tensors are 
proportional to k~k B and k s, respectively, and the equations of motion 
involve contractions of the form k. V r and k- k (in the Minkowski metric) 
which both vanish (V r symbolizes the transversal gradient). 

The projection of the boundary of the solution manifold to M 4 has the 
representation 

P ( ~ X 4 ) = ~ X  2 X y2UX2 X ~ Y  2 

Here P denotes the projection in question. The conservation requirements 
for momentum and isometry charges lead to the requirements 

n~T "~ =0 (39) 

n~F~sk~ =0 (40) 

On the part of the boundary corresponding to ~X2X y2 these conditions 
are satisfied identically because both boundary conditions involve contrac- 
tions of the type k. k and k. V T" In the remaining part of the boundary the 
conditions can be satisfied in two ways. Figure 6b illustrates the case in 
which the photon moves in the direction of k s. The boundary condition is 
satisfied when F~B vanishes on the boundary, i.e., the condition 

k . m = f  -l(n~r ) (41) 

is satisfied on the boundary. The second possibility is illustrated in Figure 
6c. Choosing the normal of y2 to have the direction of k ~ the boundary 
condition is satisfied identically because the contraction k-k vanishes. 

The basic properties of the solution are the following: The gauge-charge 
density is nonvanishing and the gauge field is nonzero also on the boundary. 
We expect, however, that the gauge charge is trivial because the solution has 
the characteristics of the free photon, i.e., magnetic and electric fields are 
orthogonal (identically) and the action vanishes. Thus the charge density 
should correspond to polarization charge. The charges corresponding to 
SO(3) isometries have nonvanishing charge densities except the charge 
corresponding to the rotation ~ - ,  q) + e. The 4-momentum of the solution is 
lightlike. The angular momentum has vanishing component in the direction 
of motion. However, we think this is not a problem because even for the 
Maxwell field the spin density and thus spin along the direction of motion is 
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vanishing for a single Fourier mode. (One might of course try to add a 
suitable divergence term to the angular-momentum current in order to get 
the spin as a surface contribution: note that F ~  :~0 on the boundary.) 

An interesting feature of the solution is the way the particle and wave 
properties of the photon merge together: the photon is a 3-manifold moving 
with the velocity of light and carrying electric and magnetic fields orthogo- 
nal to its direction of motion. Now the photons have rather quantal features 
already at the classical level: in the short-wavelength limit the particle 
aspects of the photon should be important and in the long-wavelength limit 
the field aspect of the photon is expected to dominate. 

An open question is whether the nonlinearity of the photon field at the 
classical level (implying, for example, orthgonality of electric and magnetic 
fields at the microscopic level) is a fatal feature of the model and how the 
macroscopic (certainly phenomenological) fields should reflect this prop- 
erty. 

Note: It is rather straightforward to show that the photon solutions 
possess the conformal transformations of S 2 (analogous to the analytic 
maps of the complex plane) as dynamical symmetries. By definition the 
transformation induces a multiplicative factor to the metric of S 2 and also 
the quantities F~B, T ~a, j~ change only by certain multiplicative factors and 
thus the equations of motion hold true for the transformed 4-surface. 

6.2. String Solutions 

In the following a set of solutions will be derived characterized by the 
property that the projection of the representative 4-surface to M 4 or to a 
linear subspace of it is a two-dimensional minimal surface, which also in the 
string-model describes the propagation of the string. 

Let A • B denote the decomposition of H into a product of the metric 
subspaces A and B. There are the following possibilities: 

(i) AXB=M4XS 

(ii) AXB=MSX(MI• 

(iii) A•215215 

Here the symbol M k denotes a k-dimensional linear subspace of M 4 (the 
second factor in the decomposition is always spacelike). The solution type 
has the general form 

X 4 = X  2 X y2 CA XB (42) 
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Thus X 2 is a two-dimensional surface in A having interpretation as a string 
and y2 is a two-dimensional surface in B. In the case of the open string the 
boundary of the three-dimensional spacelike section of X 4 has two compo- 
nents (ends of the string) having the topology of y2. The generation 
hypothesis suggests interpretation of the solution as a neutral meson formed 
by a quark-antiquark pair of the corresponding generation. 

The assumptions about the structure of X 4 imply the separability of the 
metric, of the second fundamental form, and of the energy-momentum 
tensor: 

g,~ =g.r162 2) (43) 

(44) 

T~Z = - Tr( FJF~r )( y2 ) ( - -gab /4) (  y2 ) 

XTr(FVSFvs)(Y2)(-g~r 2) (45) 

The equations of motion for the coordinates of A are the same as in the 
string model: 

g a f l  ~,c k ..,~r =0  (46) 

X 2 is thus a minimal surface in A. The equations for the coordinates of B 
express the extremum condition for the magnetostatic energy of the solu- 
tion: 

(47) 

The 4-momentum of the solution can be expressed in the same form as in 
the string model: now the Regge slope is, however, a dynamical quantity, 
being proportional to the rnagnetostatic energy of the solution: 

p k = l  f[g(X2)]'/2g~162 ' (48) 

1 ~f[g(y2)],/= a Tr( F ~F,~ )dy, dy 2 (49) 

Thus the interpretation of the solution as a neutral meson gets support also 
from dynamics. 
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It is of considerable interest to study the solutions in the case of the 
minimal choice S =  S 2. We can note the following facts to be characteristic 
for this dimension: 

(i) The interpretation as magnetic monopoles is possible because the 
homology charge is the winding number for the coordinate map from the 
boundary component 3X3i to $2: 

Oh = f(det s)1/2e~,s~s~ dx ~ dx ~ (50) 

This expression, however, represents simply the magnetic flux through the 
boundary component, as can be seen by using for example the expression 
for F~a in the standard coordinates for S 2. 

(ii) Only the "~r 0 solution" (y2 = S  z) is of the type A = M  4, B = S  2. The 
higher mesons made of higher-generation quarks (genus g=  1,2 . . . .  ) and 
with homological charges I Qh]> 1 correspond to the type of solution A = 
M3,  B = M  1 XS 2. These mesons correspond effectively to strings in the 
three-dimensional Minkowski space: the motion is restricted to a plane. 

(iii) The Regge slopes for the "higher" mesons are expected to be larger 
than that of ~r 0 for the obvious reason. 

(iv) The mesons made of quarks corresponding to the nonorientable 
2-manifolds are possible only when A = M  2 and B = M  2 •  2 because non- 
orientable 2-manifolds cannot be imbedded in M 1 •  2. Thus only the 
"yo-yo mode" (Figure 7) is allowed for them and this represents a singular 
4-manifold. Thus the minimal model allows only the mesons made of 
"orientable" quarks. 

6.3. Membrane Solutions 

The equations of motion also allow solutions which might be called 
membrane or "soap-film" solutions. Let X 4 have the decomposition 

X 4 = X  2' X y2 C M  3 X ( M  1 •  

Y 

Fig. 7. Illustration of the "yo-yo mode" Of the string. 
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where M 3 is now a spacelike hyperplane in M 4 (M ~ being timelike). Exactly 
the same arguments as those used for the string solutions show that X 2 must 
be a minimal surface in M 3 and y2 minimizes its electric energy (the 
equations of motion are formally the same). 

The surface X 2 necessarily has boundaries by the well-known theorem 
for minimal surfaces in Euclidian 3-space (Douglas, 1939). Charges are 
conserved and are proportional to the area of the surface X 2 (the question 
whether the boundary conditions can be satisfied is left open). The constant 
of proportionality is essentially the electric energy per unit area. The mass 
spectrum is continuous because the solution set possesses scale covariance. 
The spin of the solution is vanishing. One might interpret the possible 
quantum-mechanical counterpart as a spinless scalar particle. 

6.4. Neutrino Solutions 

The simplest type of solution with the spinor degrees of freedom 
excited is obtained when X 4 is assumed to be a flat, geodesic (second 
fundamental form vanishes) submanifold of H because the coupling be- 
tween spinors and surface geometry becomes trivial: as a result we have 
effectively a massless, free spinor-field theory in X 4. 

There are essentially two different ways to choose X 4 when the decou- 
piing requirement is posed. Either 

(i) X4CM4Xs ~ where s~ ~ S  

or  

(i i)  X 4 C M  3 ~(S  1 Q M  4 X S ,  

where M 3 is a linear subspace of M 4 (with metric having a Minkowskian 
signature) and S 1 is geodesic in S (a great circle when S=$2) .  

The equations of motion corresponding to the first possibility are 

3' ~,I,o = 0  (51) 

where the 3' matrices are those of M 4. In the second case the equations of 
motion are 

v o% + = 0 (52) 

where the 3' matrices now denote those of a three-dimensional space M 3 and 
R is the "radius" of S". 
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In the first case the equations represent a massless freely propagating 
spinor field in X 4 Q M  4. The second case is more complicated: the separable 
solutions containing the S 1 dependence in the exponential form give rise to 
a mass spectrum in multiples of l / R :  of course the lowest state corresponds 
to a massless particle. 

Solutions with compact 3-manifold and satisfying the boundary condi- 
tions can be constructed in the following way: Choose X 4 (3) so that it 
represents a convex region of the 3-space M 3 (2-space M 2) first contracting 
and then expanding so that the contraction and expansion velocities are 
asymptotically at least equal to the velocity of light. Give the initial values 
of the spinor field, so that it differs from zero only in a region V 3 CX 3 
(V 2 •  1 C X  3 • where X 3 (X 2) represents the convex region when it 
just begins to expand. Because the spinor field propagates with a finite 
velocity it never reaches the boundary region and boundary conditions are 
thus satisfied. 

The convexity requirement of the expanding 3- (2-) manifold imply that 
the boundary of the 3-manifold is either S 2 or S ~ • S ~, corresponding to the 
cases (i) and (ii), respectively. The generation hypothesis suggests interpreta- 
tion of the solutions as electronic and muonic neutrinos, respectively, The 
interpretation is certainly reasonable because the very weak interaction of 
neutrinos with the other forms of matter is qualitatively understood as a 
result of decoupling of surface geometry and spinor degrees of freedom for 
mass-shell neutrinos. Note, however, that the muonic neutrino differs from 
its electronic counterpart: it has massive excitations: the mass unit is the 
radius of S n which is fixed by using the expression for the pionic Regge 
slope and gauge-coupling as inputs: 

M:g/ x (53) 

where the parameter a'  is the pionic Regge slope. The first excitation is 
predicted to have a mass of -~94MeV if the value 1/137 is used for g2/47r.  

An important feature of the solutions is the degeneracy resulting from 
the fact that spinors have 4-components already in the minimal model. In 
the case of the minimal model the spinors corresponding to the eigenvalue 
+ 1 (for example) of iF 7 =i75| can be expressed as a superposition of 
spinors satisfying 

iysq" = e'I' 

io3qx, = e~t, (54) 

with e = --+ 1. 
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Note: A solution corresponding to the intuitive picture of the neutrino 
as a small cylinder moving along the direction of its axis and carrying a 
spinor field is obtained by assuming for X 4 CM 4 the same geometry as for 
the projection of the photon solution to M 4. The boundary conditions are 
impossible to satisfy (normal should be lightlike everywhere) but different 
charges are conserved if the nonvanishing Fourier components have wave 
vectors parallel to the direction of motion. Obviously all neutrino genera- 
tions are obtained as solutions. 

7. CONCLUSIONS AND OUTLOOK 

The basic features of the model suggested deserve a short discussion. 

(i) Topological Level. Particles (in a loose sense) are identified with 
three-dimensional submanifolds of some metric space H. The "orbits" of 
particles correspond to four-dimensional submanifolds of H. Thus the basic 
structure of the conventional field theories is rejected. The concept of the 
macroscopic space time is expected to be only an approximate one: 
the ground state of the theory should correspond to a "porridge" of 
four-dimensional vacuum surfaces making the propagation of long-range 
interactions and the concept of macroscopic space-time possible. This 
expectation gets substantial support provided H is chosen to be of the form 
M 4 • S and the action of the theory is chosen to be the Yang-Mills action 
formally. 

The basic hypothesis leads to a rough classification of particles by the 
boundary topology of the representative 3-manifold. A topological origin 
for the particle generations is suggested. In the minimal model also the 
topology of H = M  4 •  2 becomes important. The boundary components 
can be classified by their homology-equivalence classes. It is suggested that 
quarks correspond essentially to homologically (magnetically) charged 
boundary components. 

A generalization for the topological classification of basic vertices of 
the string model is made. The minimal model affords a nice explanation for 
the absence of strong interactions of leptons. 

(ii) Dynamics. The dynamics is constructed so that formally a stan- 
dard Yang-Mills theory results. The basic mathematical operation needed 
is the induction procedure making it possible to construct the metric, the 
spinor structure and Yang-Mills connection in X 4. In particular the Yang- 
Mills connection is of completely geometrical origin, being the projection of 
the Vierbein connection of H to the surface X 4. A unique signature of the 
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choice H = M 4 )< S and the Yang-Mills action is the appearance of the very 
rich vacuum structure, giving support to the hope that macroscopic space- 
time indeed results as a "porridge" of vacuum surfaces in H. 

(iii) Symmetries and Conservation Laws. The requirement that the 
isometries of H should be symmetries of the theory leads to the representa- 
tion of the isometrics by parallel translation, i.e., the spinor field is translated 
along the flow lines of the isometry by parallel translation. This realization, 
however, works with certain quite restrictive assumptions about the geom- 
etry of H. In the minimal model the isometry group contains SO(3) as a 
factor. The interpretation as "color group" is suggested because the field 
variables g~#, F~#, and '/" are essentially singlets under it. 

The theory is chirally symmetric in a generalized sense, i.e., handedness 
is defined in H (having even dimension). A possible solution to the so-called 
chiral problem is suggested based on the possibility of applying the handed- 
hess requirement to spinors. 

The generalizations of the discrete symmetries C, P, and T are con- 
structed for the minimal model. C operation gets a completely geometric 
meaning representing reflection in S 2. A rather suprising result is that both 
C, P, T and CPT(!) are broken when the handedness condition is applied. 
CP and CT are broken only by boundary conditions and P T  is left exact at 
the classical level. 

The gauge currents are identically divergenceless and addition of a 
suitable total divergence to the action guarantees that the corresponding 
charges are conserved. Because the gauge field is nonlinear and is subject to 
boundary conditions, the quantization of the gauge charge already at the 
classical level is suggested. It is found that a very simple formula for the 
gauge flux through a boundary component could explain the charges of 
the known particles. In particular, the charges of mesons could be explained 
assuming only that the gauge field satisfies the duality condition F~B = -+ F~* B 
on the boundary or has a vanishing normal component. 

(iv) The Choice of H. One could argue that the model can be only of a 
phenomenological significance because the space H appears as a structure 
not determined by dynamics but is given a priori and thus the model seems 
to contain a highly subjective element. It is rather surprising to find that the 
structure of H is to a great extent determined by rather general physical 
requirements. 

Note first that the gauge group of the model is noncompact, consisting 
of rotations in the tangent space of H. Thus in case of a generic space H we 
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can expect, for example, negative energy densities for the Yang-Mills field. 
When H has the decomposition H=M4XS the gauge group, however, 
reduces to rotations in the tangent space of S (i.e., the gauge field has 
components only in the Lie algebra of S) and becomes compact if S is 
compact. 

Assuming this decomposition and accepting the hypothesis that quark 
confinement is indeed of topological origin one is led to the choice S = S z as 
a minimal one. The group SO(3) of S 2 isometries has interpretation as a 
color group and the fact that all field variables are singlets under SO(3) 
suggests that the physical states should be SO(3) singlets. The requirement 
that the energy density of the gauge field is positive and the isometry group 
of H is the product of the Poincar6 group and color group SO(3) leads to 
the minimal model. 

The minimal model with handedness restriction applied to spinors has 
a formal structure almost that of standard spinor electrodynamics. Now the 
U(1) gauge field is, however, nonlinear: electric and magnetic fields are 
identically orthogonal. The photon solutions found, however, suggest al- 
ready at classical level the description of the photon field using the 
occupation numbers of the photon modes. An open question is how the 
phenomenologlcal macroscopic fields should reflect the orthogonafity prop- 
erty of the microscopic fields. Already in the minimal model the spinor field 
has four components, and it remains an open problem whether this means a 
double degeneracy for the neutrinos of the different generations. 

The classical solutions to the equations of motion give strong support 
to the basic topological ideas of the model. A family of solutions represent- 
ing neutral mesons as strings with magnetic monopoles at the ends of the 
string are found. The Regge slope is determined dynamically as magneto- 
static energy per unit length of the string. In particular a definite difference 
between rr 0 and other neutral mesons results: % corresponds to a string in 
M 4 but the higher mesons to strings in M 3. The solutions representing 
neutrinos are also constructed and the muonic neutrino is predicted to have 
massive excitations with the mass determined from the Regge slope and 
gauge coupling. 

(v) Open Questions. From the preceding it is clear that there are many 
interesting problems in the model, which might be approached even in the 
framework of the classical theory. For example, the problem of whether the 
gauge charge is quantized and what is the possible charge spectrum could be 
approached by studying the boundary conditions. A totally untouched 
problem is of course the construction (or even a proper formulation) of the 
quantized theory taking into account the strongly geometric nature of the 
model. 
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APPENDIX: S P I N O R  S T R U C T U R E  FOR H =  M 4 X S 

Assuming that the space S is compact, has spacelike metric, and allows 
spinor structure, denote by o k the F matrices of S. The so-called standard 
representation for the F matrices of M 4 is given in the Notation section. The 
corresponding matrices for the product can be defined as tensor products: 

I'k=TkX1 , k = l , . . . , 4  

rk+4=~{5XOk, k = 0  . . . .  , d im S  (A.1) 

D 
The conjugate spinor ~I' can be defined as a spinor 

xIr = x1I*"/4 X 1 (A.2) 

It is straightforward to verify that the quantity is invariant under local 
rotations of the group SO(n+3,1) having as infinitesimal generators the 
matrices 

Zkt =i /2[ Fk, I t ]  (A.3) 

When H has even dimension it is possible to define handedness for 
spinors. This means that we can choose the spinors to be eigen spinors of 
the matrix iF n + 1 defined as 

iFn+,=[i / (n+4)!](-deth) ' / zek , . . .k .+f  k ' . . .  F k. (A.4) 

The eigenvalues correspond to left- and right-handed spinors in H. 
The vierbein connection is determined from the requirement of co- 

variant constancy of F matrices and has the representation 

A k =A~"Y~,,, (A.5a) 

A , ~ n : •  DnF I 
4 [  ~ k )  (A.5b) 

The curvature form of the vierbein connection is expressible using the 



Geometroelectrodynamics 

curva ture  tensor  of H 
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Fkt - • 1 7 6  ~'~" (A .6 )  
- -  2Jt,klmn ~ 
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